skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jin, Yuming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present improved estimates of air–sea CO2exchange over three latitude bands of the Southern Ocean using atmospheric CO2measurements from global airborne campaigns and an atmospheric 4-box inverse model based on a mass-indexed isentropic coordinate (Mθe). These flux estimates show two features not clearly resolved in previous estimates based on inverting surface CO2measurements: a weak winter-time outgassing in the polar region and a sharp phase transition of the seasonal flux cycles between polar/subpolar and subtropical regions. The estimates suggest much stronger summer-time uptake in the polar/subpolar regions than estimates derived through neural-network interpolation of pCO2data obtained with profiling floats but somewhat weaker uptake than a recent study by Long et al. [Science374, 1275–1280 (2021)], who used the same airborne data and multiple atmospheric transport models (ATMs) to constrain surface fluxes. Our study also uses moist static energy (MSE) budgets from reanalyses to show that most ATMs tend to have excessive diabatic mixing (transport across moist isentrope, θe, or Mθesurfaces) at high southern latitudes in the austral summer, which leads to biases in estimates of air–sea CO2exchange. Furthermore, we show that the MSE-based constraint is consistent with an independent constraint on atmospheric mixing based on combining airborne and surface CO2observations. 
    more » « less
  2. Abstract Seasonal change of atmospheric potential oxygen (APO ∼ O2 + CO2) is a tracer for air‐sea O2flux with little sensitivity to the terrestrial exchange of O2and CO2. In this study, we present the tropospheric distribution and inventory of APO in each hemisphere with seasonal resolution, using O2and CO2measurements from discrete airborne campaigns between 2009 and 2018. The airborne data are represented on a mass‐weighted isentropic coordinate (Mθe) as an alternative to latitude, which reduces the noise from synoptic variability in the APO cycles. We find a larger seasonal amplitude of APO inventory in the Southern Hemisphere relative to the Northern Hemisphere, and a larger amplitude in high latitudes (lowMθe) relative to low latitudes (highMθe) within each hemisphere. With a box model, we invert the seasonal changes in APO inventory to yield estimates of air‐sea flux cycles at the hemispheric scale. We found a larger seasonal net outgassing of APO in the Southern Hemisphere (518 ± 52.6 Tmol) than in the Northern Hemisphere (342 ± 52.1 Tmol). Differences in APO phasing and amplitude between the hemispheres suggest distinct physical and biogeochemical mechanisms driving the air‐sea O2fluxes, such as fall outgassing of photosynthetic O2in the Northern Hemisphere, possibly associated with the formation of the seasonal subsurface shallow oxygen maximum. We compare our estimates with four model‐ and observation‐based products, identifying key limitations in these products or in the tools used to create them. 
    more » « less
  3. Free, publicly-accessible full text available November 1, 2025
  4. null (Ed.)
    Abstract. We introduce a transformed isentropic coordinate Mθe,defined as the dry air mass under a given equivalent potential temperaturesurface (θe) within a hemisphere. Like θe, thecoordinate Mθe follows the synoptic distortions of theatmosphere but, unlike θe, has a nearly fixedrelationship with latitude and altitude over the seasonal cycle. Calculationof Mθe is straightforward from meteorological fields. Usingobservations from the recent HIAPER Pole-to-Pole Observations (HIPPO) and Atmospheric Tomography Mission (ATom) airborne campaigns, we map theCO2 seasonal cycle as a function of pressure and Mθe, whereMθe is thereby effectively used as an alternative tolatitude. We show that the CO2 seasonal cycles are more constantas a function of pressure using Mθe as the horizontal coordinatecompared to latitude. Furthermore, short-term variability inCO2 relative to the mean seasonal cycle is also smaller when the dataare organized by Mθe and pressure than when organized by latitudeand pressure. We also present a method using Mθe to computemass-weighted averages of CO2 on a hemispheric scale. Using this methodwith the same airborne data and applying corrections for limited coverage,we resolve the average CO2 seasonal cycle in the Northern Hemisphere(mass-weighted tropospheric climatological average for 2009–2018), yieldingan amplitude of 7.8 ± 0.14 ppm and a downward zero-crossing on Julianday 173 ± 6.1 (i.e., late June). Mθe may be similarlyuseful for mapping the distribution and computing inventories of anylong-lived chemical tracer. 
    more » « less
  5. Abstract The air‐sea exchange of oxygen (O2) is driven by changes in solubility, biological activity, and circulation. The total air‐sea exchange of O2has been shown to be closely related to the air‐sea exchange of heat on seasonal timescales, with the ratio of the seasonal flux of O2to heat varying with latitude, being higher in the extratropics and lower in the subtropics. This O2/heat ratio is both a fundamental biogeochemical property of air‐sea exchange and a convenient metric for testing earth system models. Current estimates of the O2/heat flux ratio rely on sparse observations of dissolved O2, leaving it fairly unconstrained. From a model ensemble we show that the ratio of the seasonal amplitude of two atmospheric tracers, atmospheric potential oxygen (APO) and the argon‐to‐nitrogen ratio (Ar/O2), exhibits a close relationship to the O2/heat ratio of the extratropics (40–). The amplitude ratio,/, is relatively constant within the extratropics of each hemisphere due to the zonal mixing of the atmosphere./is not sensitive to atmospheric transport, as most of the observed spatial variability in the seasonal amplitude ofAPO is compensated by similar variations in(Ar/). From the relationship between/heat and/in the model ensemble, we determine that the atmospheric observations suggest hemispherically distinct/heat flux ratios of 3.30.3 and 4.70.8 nmolbetween 40 andin the Northern and Southern Hemispheres respectively, providing a useful constraint forand heat air‐sea fluxes in earth system models and observation‐based data products. 
    more » « less